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Abstract: This research synthesized a nickel-tungsten coating as a catalyst for hydrogen evolution reaction (HER)
with different current densities and assessed the resulting electrocatalytic properties and morphology. Linear sweep
voltammetry (LSV), electrochemical impedance spectroscopy (EIS), and chronoamperometry in 1 M NaOH were
used to evaluate the electrocatalytic activity for HER. A columnar morphology was observed by increasing the
current density of electrodeposition up to 500 mA/cm?®. The cyclic voltammetry test (CV) revealed that when the
plating current density increases, Cdl increases from 248 to 1310 uF/cm’ and the active surface area increases 5
times. The results showed that by modifying the coating morphology, the current density of the hydrogen evolution

increased up to two times.
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1. INTRODUCTION

Two main problems that will affect human life in
the future are the pollution of the environment and
the depletion of fossil fuels (1-3). Therefore,
developing and applying renewable and clean
energy sources is a very important necessity that
has received much attention (4). One source of
clean, unlimited, and readily available energy is
hydrogen, which has a higher energy density than
hydrocarbon fuels. One of the methods of
hydrogen production is the use of hydrocarbon
resources, which also has the two primary issues
mentioned above (5-7). Electrolyzing water to
obtain pure hydrogen is another method that
many researchers are currently trying to expand.
Most of the hydrogen on Earth is found in water,
which makes up more than two-thirds of the
planet (8, 9). Thus, electrolysis is an easy and safe
method with an infinite source, and the need to
expand its use is well understood (10, 11).

Platinum exhibits high electrocatalytic activity
due to its high exchange current density and low
overvoltage. On the other hand, the high cost and
rarity of this noble metal increase the cost and
restrict its applications. For this reason, many
attempts have been made to find a suitable
alternative  to  platinum  with  optimal
electrocatalytic activity as well as low cost (12-
14). Transition metals, especially nickel, are one

of the most promising alternatives to platinum
with high electrocatalytic properties. Many
efforts have been made to improve the
electrocatalytic properties of nickel by alloying
and fabricating nickel-based composites, with
acceptable and promising results (15-20)

Combining metals on the left or right of a
transition metal in the periodic table, i.e., the
combination of metals with vacant or half-
occupied d orbitals with metals whose d orbitals
have electron pairs leads to a significant increase
in the density of electron states and thus raises the
electrocatalytic property for the hydrogen
evolution reaction (HER). Alloying nickel
([Ar] 3d%4s?) with tungsten ([Xe] 4f'*5d%6s?)
yields satisfactory results (21). In this regard,
researchers have achieved high catalytic activity
by changing specific factors and studying the
effects of these factors on the electrochemical
behavior of the Ni-W coating (22-24). In the
following sections, we study the effect of some of
these factors. Jameei Rad et al. (25) synthesized a
nickel-tungsten coating by electroplating on a
copper cathode, and in the next stage, they created
a more active surface and enhanced the surface
roughness by etching the electrode surface, which
ultimately increased the electrocatalytic property
as well as HER. Moreover, the degree of
wettability of the coating and its effect on
hydrogen production have been examined and
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reported.

Vernickaite et al. (6) investigated the effect of
tungsten addition on nickel, iron, and cobalt and
the alloying of these metals and reported that the
nickel-tungsten alloy has the best electrocatalytic
properties as well as the lowest activation energy
to start HER. They also concluded that by
increasing the amount of tungsten, nanostructured
intermetallic compounds are formed, which have
a positive effect on HER.

Allam et al. (21) worked on a Ni-W-Mo alloy and
obtained coatings with different chemical
compositions by changing the Mo4*/WO4* ratio
in the plating bath. They reported that the
electrocatalytic  properties were enhanced
compared with those of pure nickel due to the
synergistic effect.

As mentioned in the literature, hydrogen
evolution can be improved by strengthening the
intrinsic electrocatalytic properties and increasing
the active surface (26). This can be obtained by
several methods, one of which is to change the
surface morphology and the way the deposits
grow during the electrodeposition process.
Therefore, this research aimed to change the
morphology of the nickel-tungsten alloy coating
by using the columnar growth mechanism. To
accomplish this purpose, high current density was
used. In this paper, the morphological changes of
the coating were investigated and the
electrocatalytic properties of HER were analyzed
using electrochemical impedance spectroscopy
(EIS) and linear sweep voltammetry (LSV). The
stability of the coating was also evaluated using
the chronoamperometry test, and the results were
reported.

2. EXPERIMENTAL PROCEDURES

St37 steel plates with a thickness of 2 mm were
used as the substrates. They were cut into 5 cm X
3 cm pieces and ground using SiC papers with a
grit size of up to grit 1000. The substrates were
ultrasonically degreased by acetone for 15 min
and then were activated in a solution containing
10 wt.% HCI. Activation was performed for 30
seconds at 25°C. Finally, they were washed with
distilled water.

The composition of the bath used is presented in
Table 1 (20, 27). Plating was performed at 60°C
for 30 min. The pH of the solution was adjusted

5

to pH= 9 by the addition of ammonia and sulfuric
acid. Pure nickel plates with dimensions of 7 cm
x 4 cm were used as the anode. Electrodeposition
was performed at average currents of 300, 400,
and 500 mA/cm?. Plating was carried out in the
pulsed mode with a working cycle of 70% and a
frequency of 100 Hz. The distance between the
anode and cathode was 3 cm and the stirring speed
was 200 rpm.

Table 1. Composition of the Ni-W plating bath

NiSO4.7H,0 15.8 g/l
Na2W04.2H20 46.2 g/l
Na3C6H5.2H20 147.1 g/l
NH.CI 26.7 g/l
NaBr 15.4 g/l

The X-ray diffraction (XRD) analysis was used to
detect the phase composition (DRON-8, K, ci=
1.54 A), field emission scanning electron
microscopy (FESEM) was employed to examine
the surface morphology, and energy dispersive
spectroscopy (EDS) spectroscopy was used to
determine the chemical composition of the
coatings (TESCAN Company). LSV, EIS, and
chronoamperometry were utilized to evaluate the
electrocatalytic properties. Three electrode tests
were performed with the platinum electrode as the
counter electrode, the as-coated sample as the
working electrode, and the calomel reference
electrode in 1 M NaOH solution (28). EIS was
performed in the range of 100 kHz to 10 mHz
under a cathodic potential of -1.1 V and a
sinusoidal signal amplitude of 10 mV.
Chronoamperometry was also conducted at a
cathodic voltage of -1.5 V and a time of 3 hours.
Electrochemical analyses were carried out by the
Autolab PGSTAT204 device.

3. RESULTS AND DISCUSSION

3.1. Morphology and Microstructure of the
Coating

Figure 1 shows the morphology of the coating
obtained using different current densities. As can
be observed, coarse grains and dense cauliflower
structures were formed at 300 mA/cm? (Fig. 1a).
By raising the current density to 400 mA.cm™
(Fig. 1b), the vertical growth rate exceeded the
horizontal growth rate. For this reason, the hollow
cylinders inside the coating found no chance of
growth and joining each other. Figure 1d shows


http://dx.doi.org/10.22068/ijmse.3482
https://vu.iust.ac.ir/ijmse/article-1-3482-en.html

[ Downloaded from vu.iust.ac.ir on 2025-11-21 ]

[ DOI: 10.22068/ijmse.3482 ]

Iranian Journal of Materials Science and Engineering, Vol. 21, Number 2, June 2024

an inside view of these cylinders. These cylinders
expanded the surface area of the coating. By
increasing the current density to 500 mA/cm?
(Fig. Ic), the growth of the coating formed
parallel columns that were placed next to each
other and grew, and the horizontal growth of these
columns was significantly reduced. In Fig. le, the
growth front of one of these columns can be seen
at a higher magnification, which has a sharp
roughness at the nanometer scale. These are
effective in increasing the surface area and
surface roughness.

The XRD pattern of the coating electrodeposited
with a current density of 500 mA/cm? is shown in
Fig. 2a. Diffraction peaks of Ni (1 1 1) and Ni
(2 0 0) are indicative of the nickel crystal in Fcc
structure. The nickel peaks exhibit a certain
deviation from those of pure nickel. This indicates
that the nickel atoms are partially replaced with
tungsten atoms and that the Ni-W solid solution is
formed, which leads to the increase of the lattice
parameter and the shift of the nickel peak to a
lower angle. The results of the EDS mapping

Fig. 1. Surface morphology of the samples electrodeposite

analysis are displayed in Fig. 2¢ and 2d and prove
the simultaneous and scattered presence of nickel
and tungsten in the coating. The results of the
EDS analysis revealed that the atomic
percentages of tungsten and nickel were 10 and
90, respectively.

3.2. Investigation of
Properties pm

3.2.1.  Results of LSV testing

Figure 3 shows the results of the LSV test
investigating the electrocatalytic properties of the
coatings. It is clear that with the rise in the current
density, the occurrence of columnar growth in the
coating, and the improvement in the catalyst
properties, the potential to start HER shifted to
more positive values. As a result, the catalyst
required a lower amount of energy to start the
reaction. In addition, at a certain overpotential,
the amount of cathodic current density increased,
which indicates a higher reaction rate. This
improvement in the properties continued up to
500 mA/cm?.

Electrocatalytic

d with different current density a- 300 mA/cm?, b- 400

mA/cm?, ¢c- 500 mA/cm?, d- 400 mA/cm? with higher magnification, e - 500 mA/cm? with higher
magnification.
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map of W distribution of the coating electrodeposited with a current density of 500 mA/cm?.

In fact, in addition to the inherent nature of the
electrode, increasing its active surface also played
an important role in its catalytic activity, which is
due to the rise in the electron transfer sites
between hydrogen and the electrode surface. By
expanding the active surface of electrodes, more
sites became available for hydrogen ions and
more ions were reacting at the same time.
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Fig. 3. Results of LSV test on Ni-W coating
electrodeposited with different current densities.

The results showed that both the cathodic current
density of hydrogen evolution and the catalytic
activity of the electrode were increased twofold.

3.2.2. EIS test

EIS tests were performed on the samples
to further investigate the electronegativity
properties, and the results of Nyquist diagrams
can be observed in Fig. 4. In this experiment, the
potential of the samples was in the negative
cathodic range of 1 V concerning the calomel
reference electrode to evaluate HER kinetics. The
equivalent circuit is also shown in Fig. 4, which
includes Rs (i.e., the solution resistance), Rp (the
charge transfer resistance), and Q (the constant
phase element). This experiment indicated that by
increasing the electroplating current density, the
charge transfer resistance decreased. This finding
was completely in agreement with the results of
the LSV test and revealed that the current density
of 500 mA/cm? had the lowest charge transfer
resistance for HER while exhibiting the highest
electrocatalytic properties. Table 2 shows the
values of the parameters obtained from the
equivalent circuit of the EIS test. As can be seen,
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the current density of 500 mA/cm? has the lowest
resistance. Moreover, Yo-CPE is the highest value
in this coating, which indicates the highest
number of active sites on the coating surface. These
active sites play an important role in electron
transfer between the coating and hydrogen.
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Fig. 4. Nyquist diagrams obtained from the EIS test
on Ni-W coating electrodeposited with different
current densities.

3.2.3. Chronoamperometry results

Steadiness and performance stability during the
service life are of great importance for industrial
catalysts. To  investigate this  factor,
chronoamperometry was performed at a negative
cathodic constant potential of 1.5 V with respect
to the calomel reference electrode. The results
presented in Fig. 5 prove the appropriate stability
of the samples. It was also found that at the same
potential, the coating applied at a higher current
density showed a higher current density of hydrogen
evolution and therefore had better performance.
3.2.4.  Cyclic voltammetry results

To evaluate the active surface area of the electrodes,
the cyclic voltammetry test was carried out at
different scanning rates and the results are shown in
Fig. 6. In this test, the active surface area of the
electrodes is directly related to Cq and increasing the
slope of the current density graph in terms of the
scanning rate indicates a rise in the surface area of the

coating which is determined using the equation (1) :
IAi=2 (Caxv) (1)
where v is the potential sweep rate, and |i| is the
charging current density. As illustrated in Fig. 6,
when the plating current density increases, Cai has
increased from 248 to 1310 uF/cm? and the active
surface area significantly grows as well.

140
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— =300 mA/cm?

0 50 100 150 200 250
Time (min)

Fig. 5. Results of chronoamperometry of Ni-W
coating electrodeposited with different current
densities.

4. CONCLUSIONS

In summary, Nickel-tungsten coating was
synthesized in different current densities on the
low-carbon steel substrate and the following
results were obtained.

1) By increasing the current density of
electrodeposition up to 500 mA/cm?, Ni-W
coatings with high porosity, columnar
morphology, and high active surface were
obtained.

2) The cyclic voltammetry test (CV) revealed
that when the plating current density increases,
Cdl increases from 248 to 1310 pF/cm? and
the active surface area increases 5 times.

3) Moreover, by expanding the active surface of the
coating, at a certain overpotential, the amount of
cathodic current density increased, which indicates
enhanced electrocatalytic property and HER.

4) This method is an efficient and facile approach
to improving the electrocatalytic properties of
the coating.

Table 2. Values of parameters of the equivalent circuit of the EIS test performed on Ni-W coating
electrodeposited at different current densities.

i (mA.cm?) Rs (Q.cm?) Rp (Q.cm?) Yo - CPE (Q2.cm™.s") n
500 9.08 36 11.3 0.62
400 8.91 59 7.1 0.68
300 9.13 136 0.9 0.75
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Fig. 6. Results of cyclic voltammetry test of Ni-W coating electrodeposited with different current densities, a)
500, b) 400, c) 300 mA/cm?.
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